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IMPORTANCE Radiocontrast has long been thought of as nephrotoxic; however, a number of
recent observational studies found no evidence of an association between intravenous
contrast and kidney injury. Because these studies are at high risk of confounding and
selection bias, alternative study designs are required to enable more robust evaluation of this
association.

OBJECTIVE To determine whether intravenous radiocontrast exposure is associated with
clinically significant long-term kidney impairment, using a study design that permits stronger
causal interpretation than existing observational research.

DESIGN, SETTING, AND PARTICIPANTS This cohort study included all emergency department
patients aged 18 years or older undergoing D-dimer testing between 2013 and 2018 in the
Canadian province of Alberta. A fuzzy regression discontinuity design was used, exploiting
the fact that individuals just either side of the eligibility cutoff for computed tomographic
pulmonary angiogram (CTPA)—typically 500 ng/mL—have markedly different probabilities of
contrast exposure, but should otherwise be similar with respect to potential confounders.

EXPOSURES Intravenous contrast in the form of a CTPA.

MAIN OUTCOMES AND MEASURES Estimated glomerular filtration rate (eGFR) up to 6 months
following the index emergency department visit.

RESULTS During the study period 156 028 individuals received a D-dimer test. The mean age
was 53 years, 68 206 (44%) were men and 87 822 (56%) were women, and the mean
baseline eGFR level was 86 mL/min/1.73 m2. Patients just above and below the CTPA
eligibility cutoff were similar in terms of measured confounders. There was no evidence for an
association of contrast with eGFR up to 6 months later, with a mean change in eGFR of
−0.4 mL/min/1.73 m2 (95% CI, −4.9 to 4.0) associated with CTPA exposure. There was
similarly no evidence for an association with need for kidney replacement therapy (risk
difference [RD], 0.07%; 95% CI, −0.47% to 0.61%), mortality (RD, 0.3%; 95% CI, −2.9% to
3.2%), and acute kidney injury (RD, 4.3%; 95% CI, −2.7% to 12.9%), though the latter analysis
was limited by missing data. Subgroup analyses were potentially consistent with harm among
patients with diabetes (mean eGFR change −6.4 mL/min/1.73 m2; 95% CI, −15.4 to 0.2), but
not among those with other reported risk factors for contrast-induced nephropathy; these
analyses, however, were relatively underpowered.

CONCLUSIONS AND RELEVANCE Using a cohort study design and analysis that permits stronger
causal interpretation than existing observational research, we found no evidence for a
harmful effect on kidney function of intravenous contrast administered for CTPA in an
emergency setting.
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O ne of the most important reported harms of radiocon-
trast administration is acute kidney injury (AKI), an
adverse effect known as contrast-induced nephropa-

thy (CIN). A number of recent observational studies,1-8 how-
ever, found no association between contrast exposure and ad-
verse renal outcomes. These studies suggest that although CIN
may have existed with contrast agents used in the past, mod-
ern agents and doses do not appear to be harmful.9 The exist-
ing evidence, however, is limited by a number of potential bi-
ases. First, confounding may result from baseline differences
in the risk of developing kidney injury between exposure
groups. For example, individuals receiving noncontrast CT
scans, often used as a comparator group, may be receiving such
a scan because they are perceived to be at high risk of kidney
injury. In addition, selection bias may arise because many ex-
isting studies look at acute kidney injury (AKI) as their out-
come, and limit study inclusion to those with appropriately
timed repeat creatinine measurements.1,6-8 Although creati-
nine levels may be routinely measured after contrast expo-
sure due to a belief in CIN, serial creatinine measurement in
unexposed controls presumably reflects clinician beliefs that
the patients have some other predisposition to AKI. These fac-
tors may contribute to forming a control group at high risk of
kidney injury, creating a bias in favor of contrast and thus po-
tentially masking harm. Despite several studies finding no evi-
dence for CIN, their methodological limitations preclude clear
casual interpretation and mean that concern over kidney in-
jury from contrast exposure is still widespread among clini-
cians. As a result, important diagnostic imaging and proce-
dures may be avoided due to fear of CIN, especially among
patients with preexisting kidney impairment. To advance
knowledge on this question, new analytical approaches that
allow stronger causal interpretation are required.

Methods
The present study seeks to overcome the limitations of exist-
ing research by using the regression discontinuity design (RDD).
The RDD approach relies on the existence of a continuous vari-
able, the running variable, for which there is a cutoff that de-
termines eligibility for receiving treatment. Individuals who fall
just either side of the cutoff have markedly different probabili-
ties of receiving the treatment, but are expected to have very
similar values of other characteristics, including potential
confounders.10,11 By comparing outcomes in individuals just
either side of the cutoff, the RDD approach can provide effect
estimates from observational data that are largely free from both
measured and unmeasured confounding.12-16 In the case of in-
travenous contrast, this will be achieved by studying individu-
als receiving D-dimer testing (the running variable) in the emer-
gency department (ED). The most common indication for this
test is suspected pulmonary embolism (PE),17,18 with those scor-
ing above the cutoff—typically 500 ng/mL—more likely to re-
ceive contrast in the form of a computed tomographic pulmo-
nary angiogram (CTPA) to rule in or rule out the diagnosis.
Approval for this study was obtained from the Health Re-
search Ethics Board of the University of Alberta (Pro00091979),

including a waiver for obtaining participant consent due to the
deidentified and retrospective nature of the data.

Study Population and Data
The study population included all individuals aged 18 years or
older who had a D-dimer measured during an ED visit in the
Canadian province of Alberta between April 1, 2013 and June
30, 2018. Patients were excluded if they did not also have a
baseline estimated glomerular filtration rate (eGFR) reported
within 2 hours of the D-dimer result, or if they received kid-
ney replacement therapy (dialysis or kidney transplantation)
in the preceding 6 months. For individuals with eligible re-
peat visits, only the first visit was included.

Like all Canadian provinces, Alberta has universal pub-
licly funded health care. Laboratory and imaging data from
across the province, as well as patient demographics and clini-
cal covariates, are stored in central Alberta Health Services data
sets, and can be linked by a unique identifier. These include
the laboratory, imaging, and discharge abstract data sets, and
ED visit summaries.19-21

Outcome and Exposure Variables
The primary outcome was long-term kidney function, mea-
sured by eGFR up to 6 months after the index ED visit. Long-
term kidney function is a more patient-centered outcome than
AKI because it is more proximate to harder clinical end points
such as permanent kidney replacement therapy. It also helps
address the problem of selection bias that arises with using AKI
as an outcome, as the indications for testing eGFR months af-
ter the ED visit are much less likely to be affected by variables
associated with the initial probability of CTPA exposure. Where
multiple eGFR measurements were taken in the 6 months af-
ter the index visit, the latest measurement was used. Second-
ary outcomes were receipt of kidney replacement therapy (di-
alysis or kidney transplantation) in the 6 months after the index
ED visit, AKI—defined as an increase in creatinine levels of 50%
or 0.3 mg/dL (26 μmol/L) within 7 days—and all-cause mor-
tality at 6 months.

The primary exposure was receipt of CTPA during the in-
dex ED visit. Additional covariates that may be associated with
the outcome were included in the statistical analyses to im-
prove the precision of effect estimates.22-24 These were age,
baseline eGFR, sex, diabetes, hypertension, cancer, coronary

Key Points
Question Is intravenous radiocontrast associated with clinically
significant kidney injury?

Findings In this quasi-experimental cohort study of 156 028
individuals, exposure to intravenous contrast was associated with
a 0.4 mL/min/1.73 m2 reduction in estimated glomerular filtration
rate up to 6 months later, which was not statistically significant nor
clinically meaningful.

Meaning Intravenous contrast was not associated with significant
long-term kidney injury; the regression discontinuity design used
in this study allows for greater confidence that this effect estimate
is not distorted by confounding.
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artery disease, ED triage score, and Charlson comorbidity in-
dex. Further details on these variables are provided in
Exposure Variables in the Supplement.

Statistical Analysis
We used a fuzzy RDD analysis to estimate the association of
CTPA exposure with long-term eGFR, with D-dimer as the run-
ning variable. Fuzzy RDD is a form of instrumental variable
analysis, where the magnitude of the jump or discontinuity in
the exposure that occurs at the cutoff is used to rescale any
discontinuity in the outcome that occurs at the cutoff.25 This
maintains the unconfounded effect estimate of the RDD ap-
proach while accounting for imperfect compliance with the
treatment cutoff. The resulting effect estimate is the com-
plier average causal effect, which is the effect of the interven-
tion among those whose treatment allocation is determined
by the cutoff (compliers).11

For each outcome, we report both the intention-to-treat
(ITT) effect of crossing the D-dimer cutoff, and the rescaled
complier average causal effect attributable to CTPA itself. For
the primary outcome, the effect estimate will be the differ-
ence in long-term eGFR, whereas for the binary secondary out-
comes, it will be the risk difference (RD). The associations be-
tween the running variable and both (1) the exposure and
(2) the outcome were evaluated using local linear regression,
with separate regression lines fitted above and below the
cutoff.26,27 The difference in where these lines intersect the
cutoff quantify the discontinuity in the exposure and
outcome.16 The local linear approach minimizes bias by lim-
iting the study sample to a defined bandwidth around the cut-
off in which a linear regression can be estimated. This re-
duces the risk of misspecification errors that may arise from
the more complex functional forms that are needed to fit the
regression curve across the whole range of the running vari-
able values.28 The size of the bandwidth, which was allowed
to vary above vs below the cutoff, was automatically selected
using a data-driven method that seeks to optimally balance the
bias-variance trade off.29,30 We used an asymmetric band-
width as we anticipated an asymmetric distribution of the run-
ning variable, D-dimer, and optimization of the bias-variance
trade off may vary for the different regression slopes on either
side of the cutoff. A triangular kernel was used, such that in-
dividuals closest to the cutoff were more heavily weighted than
those further away. To account for potential misspecification
of the regression function and the additional variance that this
generates, bias-adjusted robust CIs were estimated.31,32

Although in most hospitals in the study, a D-dimer cutoff
of 500 ng/mL was considered a positive result, some used
460 ng/mL or 470 ng/mL as the cutoff.33,34 All participants there-
fore had their D-dimer centered on whichever cutoff was used in
the institution of their index ED visit. Individuals whose D-dimer
fell exactly on the cutoff were excluded from analysis because
theirclassificationwithregardtothecutoff isambiguousandmay
thus result in distortion of the treatment discontinuity.

Additional analyses were performed to assess the sensitiv-
ity of results to bandwidth size and symmetry, along with glob-
al (ie, whole data set) analyses using polynomials of varying de-
grees. Subgroup analyses were carried out to explore if the

effect of treatment varied between groups considered to be at
high and low risk of CIN,35 using the method of Altman and
Bland.36 Finally, we performed an analysis using all eGFR mea-
surements between 7 days and 6 months after the index ED visit
as the outcome, with a variance estimator robust to clustering
by participant,37 to determine if this could improve the precision
of our effect estimates. Details of these additional analyses are
provided in Supplementary Analyses in the Supplement.

All analyses were limited to complete cases. As a retro-
spective study relying on routinely collected clinical data, there
may be significant missing data for the primary outcome of
long-term eGFR and secondary outcome of AKI. We assessed
whether this may give rise to selection bias by evaluating if
(1) the frequency of missingness and (2) timing of data collec-
tion, changed at the cutoff. If there was no association be-
tween treatment group and data missingness, as evidenced by
no change at the cutoff, this would provide confidence that the
use of a complete case analysis would not result in marked se-
lection bias. This reflects the fact that selection bias requires
the existence of an association between study inclusion and
treatment group.38 In contrast because Alberta has universal
health care and administrative data should capture all epi-
sodes of new dialysis, kidney transplant, or death, these out-
comes should have no missing data except for patients who
move out of province.

All analyses were performed using Stata statistical soft-
ware (version 15, Stata Corp), with the primary and second-
ary analyses using the rdrobust package.37 Two-sided alpha was
set at 0.05. The code used in the statistical analysis is avail-
able at https://github.com/goulden/contrast.

Results
There were 156 028 individuals who received a D-dimer test
and met inclusion criteria during the study period (eFigure 1
in the Supplement). Patient characteristics are described in
Table 1. The mean age was 53 years, 68 206 (44%) were men
and 87 822 (56%) were women, and the mean baseline eGFR
was 86 mL/min/1.73 m2. eTable 1 in the Supplement groups pa-
tients by CTPA receipt, demonstrating between group differ-
ences that may lead to confounding if analyzed using conven-
tional methods. The association between D-dimer and receipt
of CTPA, as well as several potential confounders, is depicted
in Figure 1 and eFigure 2 in the Supplement. This demon-
strates a clear 23% discontinuity in CTPA exposure at the
D-dimer cutoff. There is no evidence of any discontinuity for
potential confounders (Table 1), meaning that exposure groups
were well balanced at the cutoff, corroborating the assump-
tions underlying the RDD analysis.

Data on the primary outcome, long-term eGFR, was avail-
able for 84 624 patients (54%) (eTable 2 in the Supplement).
The frequency of missing eGFR measurements and their tim-
ing did not change at the cutoff (eTable 3, eFigure 3 in the
Supplement). The median time to the last eGFR test in the 6
months following the ED visit was 3.7 months (interquartile
range, 1.8-5.1). Bandwidths of 80 ng/mL below and 1190 ng/mL
above the cutoff were automatically selected by the software
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package, within which 29 830 patients were included. The es-
timated ITT effect of the D-dimer cutoff on long-term eGFR is
depicted in Figure 2A, with a nonsignificant discontinuity of
−0.1 mL/min/1.73 m2 (95% CI, −1.2 to 1.1) (Table 2).

In the local linear fuzzy RDD analysis, there was no evi-
dence of an association of intravenous contrast with long-
term eGFR, with an eGFR change of −0.4 mL/min/1.73 m2 (95%
CI, −4.9 to 4.0) attributable to CTPA exposure caused by cross-
ing the D-dimer cutoff (Table 2). A sensitivity analysis includ-
ing all 84 624 patients and using a global cubic polynomial
fuzzy RDD approach similarly found no evidence of an asso-
ciation, with an eGFR change of 0.4 mL/min/1.73 m2 (95% CI,
−2.1 to 2.8) attributable to CTPA exposure (Figure 2B; eTable 4
in the Supplement). Of 8 sensitivity analyses using different
bandwidths and polynomial orders, 7 found no evidence of an
association (eTable 4 in the Supplement).

Overall, 165 (0.11%) patients required kidney replace-
ment therapy during the 6 months following their ED visit (161
dialysis, 4 kidney transplant). There was no evidence of an as-
sociation of CTPA exposure with the need for kidney replace-
ment therapy (RD, 0.07% [95% CI, −0.47% to 0.61%]) (Table 2;
eFigure 4A in the Supplement). Of those with repeat creati-
nine levels measured within 7 days, 4147 (9.7%) developed AKI,
with no evidence of an association of contrast exposure with
this risk (RD, 4.3% [95% CI, −2.7% to 12.9%]) (Table 2; eFig-
ure 4B in the Supplement). However, repeated creatinine mea-
surements within 7 days were only available for 42 691 pa-
tients (27%), with a discontinuity in missingness at the cutoff
(eTable 3, eFigure 5A in the Supplement). Overall, 6656 pa-
tients (4.3%) died in the 6 months following the index ED visit,
with no evidence of an association with CTPA (RD, 0.3% [95%
CI, −2.9% to 3.2%]).

Subgroup analyses (Table 3) found no evidence that the
association of contrast with long-term eGFR varied by base-
line eGFR, age, or hypertension. Among those with diabetes,
the association was potentially consistent with harm al-
though not statistically significant, with an eGFR change of
−6.4 mL/min/1.73 m2 (95% CI, −15.4 to 0.2; P for heteroge-
neity = .12). In a sensitivity analysis using all eGFR measure-
ment 7 days to 6 months after the index ED visit as the out-
come, CTPA exposure was associated with an eGFR change of
−0.9 mL/min/1.73 m2 (95% CI, −7.6 to 2.4).

Discussion
In this large, multiyear study using population-based data, we
found no evidence for an association of intravenous contrast
with kidney function measured by eGFR up to 6 months after
exposure to CTPA. There was similarly no evidence of an as-
sociation with the risk of renal replacement therapy, all-
cause mortality, or AKI, though the latter analysis was lim-
ited by missing data. Results were consistent across most
subgroups thought to be at elevated risk of CIN, although these
analyses were relatively underpowered.

Definitively proving a negative is difficult, but the results of
our study suggest that a clinically significant association of in-
travenous contrast with long-term renal function is very unlikely.
The lower 95% CI of our primary outcome, an eGFR drop of
4.9 mL/min/1.73 m2, is less than one-fifth of a standard deviation
ofbaselineeGFRandoflimitedclinicalsignificance.Furthermore,
the point estimates in our primary analysis and in 6 of the 8 sen-
sitivity analyses (eTable 4 in the Supplement) yielded an eGFR
difference (positive or negative) of less than 1.5 mL/min/1.73 m2

attributable to CTPA. On the other hand, for our secondary out-
comes of AKI and renal replacement therapy, it is more challeng-
ing to reject the possibility of an association. Although the dif-
ference was not statistically significant, the point estimate and
upper 95% CI of the AKI outcome were consistent with a clini-
cally significant association. However, this analysis may be at risk
of selection bias (eTable 3 in the Supplement), and the null ef-
fect of the primary analysis suggests that if there was any acute
kidney injury it did not progress to long-term injury. The point
estimate and upper 95% CI of the kidney replacement therapy
outcome were very small in absolute terms, though a clinically
relevant relative effect could not be excluded.

In our subgroup analyses of potentially high-risk pa-
tients, none of the stratum-specific effect estimates or tests of
heterogeneity led us to reject the null hypothesis of no effect.
However, these analyses were relatively underpowered. The
point estimates for most potentially high-risk subgroups—
those with eGFR lower than 45 mL/min/1.73 m2, older than 60
years, or hypertension—were very small, although their CIs in-
cluded potentially clinically significant effects. The point es-
timate for patients with diabetes, however, was potentially
compatible with clinically significant harm. Despite being an
independent risk factor for acute and chronic kidney injury,
most existing studies do not find evidence that diabetes spe-
cifically increases the risk of CIN.39-41 However, given the risk
of residual confounding in existing research, and our finding

Table 1. Characteristics of Individuals Undergoing
Emergency Department D-Dimer Testing

Variable Value (%)

Discontinuity
at the D-dimer
cutoff

Age, mean (SD), y 53 (19) 0.02

Male 44 1.6%

Baseline eGFR, mean (SD),
mL/min/1.73 m2

86 (26) 0.07

Diabetes 12 0.03%

Hypertension 13 −1.8%

Coronary artery disease 5 −0.1%

Cancer 3 0.3%

CTAS score

1-2 40

0.043 45

4-5 15

Charlson comorbidity index score

0 71

0.002
1 16

2 7

≥3 7

Abbreviations: CTAS, Canadian Triage and Acuity Scale; eGFR, estimated
glomerular filtration rate.
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Figure 1. Association Between D-Dimer and Primary Exposure and Potential Confounders
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Figure 2. Association Between D-Dimer and Long-term eGFR
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consistent with possible harm, further research using caus-
ally robust methodology is warranted in this subgroup.

These findings are consistent with a number of existing
studies1-5 finding no association between intravenous con-
trast and kidney injury. However, our quasi-experimental de-
sign allows for causal interpretation with much greater con-
fidence than existing research. At the D-dimer cutoff, there was
no evidence of discontinuities in any of the measured con-
founders, analogous to a well-balanced randomized clinical
trial, lending support to the idea that the same is true for un-
measured confounders.

An additional benefit of our study was the ability to evalu-
ate the risk of selection bias. Unlike many other studies
that limit inclusion to those with repeated creatinine
measurements,1,6-8 our inclusion criteria were based solely on

baseline characteristics. Although we performed complete case
analyses, we were able to evaluate the risk of selection bias by
exploring the association between the D-dimer cutoff and the
risk of missing data (and hence exclusion from the analysis).
The absence of a discontinuity in missingness means there is
no association between exposure group and study inclusion,
significantly reducing the possibility of selection bias.38 Of note,
we did find evidence for an association between exposure sta-
tus and outcome measurement for our secondary outcome of
AKI, raising a concern for selection bias in studies that limit
inclusion to those with repeat short-term creatinine measure-
ments. Although there was no evidence of a discontinuity in
missingness for our primary outcome, it remains possible that
CTPA exposure would increase eGFR retesting for some (eg,
by causing AKI) and decrease it for others (eg, by causing mor-
tality), thus potentially giving rise to selection bias despite no
detectable discontinuity in outcome missingness.

Additional strengths of our study include the large sample
size, comprising more participants that the total number in a re-
cent meta-analysis5 on this question, and the use of a compre-
hensive population-wide data set, maximizing representative-
ness, and providing near complete outcome ascertainment for
the kidney replacement therapy and mortality outcomes.

Limitations
The principal limitation of any RDD analysis relates to the gen-
eralizability of the results. Because the treatment effect is es-
timated for those whose D-dimer value falls at the cutoff, it may
not apply to those further away from this value. Because this
is a fuzzy RDD analysis, the treatment effect is further re-
stricted to those at the cutoff who are compliers ie, those whose
receipt of a contrast-enhanced scan is determined by the cut-
off. Individuals perceived to be at higher risk of kidney injury
are less likely to have their CTPA receipt determined primar-
ily by their D-dimer results, thus may be underrepresented
among compliers. However, supplementary analyses found no
evidence of heterogeneity of the treatment effect between com-
pliers and noncompliers ( Supplementary Analyses and eFig-
ure 6 in the Supplement).

An additional potential limitation is violation of the ex-
clusion restriction, whereby exposures other than intrave-
nous contrast are affected by crossing the cutoff. It is likely that
in patients perceived to be at high risk of kidney injury, clini-
cians would have taken steps to mitigate this risk, such as pre-
scribing prophylactic prehydration. It was not possible to evalu-
ate this directly because treatment data was not available in
our data set. Whether such mitigation strategies would have
masked any harm from contrast is called into question, how-
ever, by multiple randomized clinical trials42-45 showing no ef-
fect of these therapies on the risk of postcontrast AKI.

Conclusions
To our knowledge, this study provides the strongest evidence to
date that intravenous contrast is not associated with significant
kidney injury, further challenging the considerable clinical pre-
occupation with the occurrence and prevention of CIN.

Table 2. Effect of D-Dimer Cutoff (ITT) and CTPA Exposure (Complier
Average Causal Effect) on Primary and Secondary Outcomes

Outcome
Population
mean

eGFR, difference
(95% CI)

Primary outcomes

Long-term eGFR,
mL/min/1.73 m2

D-dimer cutoff 80.9 −0.1 (−1.2 to 1.1)

CTPA −0.4 (−4.9 to 4.0)

Secondary outcomes, risk difference, % (95% CI)

Renal replacement therapy

D-dimer cutoff 0.11 0.07 (−0.03 to 0.19)

CTPA 0.07 (−0.47 to 0.61)

Acute kidney injury

D-dimer cutoff 9.7 0.9 (−0.5 to 3.0)

CTPA 4.3 (−2.7 to 12.9)

All-cause mortality

D-dimer cutoff 4.3 0.1 (−0.7 to 0.8)

CTPA 0.3 (−2.9 to 3.2)

Abbreviations: CTPA, computed tomography pulmonary angiogram;
eGFR, estimated glomerular filtration rate; ITT, intention-to-treat.

Table 3. Effect of CTPA Exposure on Long-term eGFR by Subgroup

Variable
eGFR difference (95% CI),
mL/min/1.73 m2

P value for
heterogeneity

Overall effect estimate −0.4 (−4.9 to 4.0) NA

Baseline eGFR,
mL/min/1.73m2

≥45 −3.6 (−9.5 to 1.8) .74

<45 0.5 (−12.1 to 33.8)

Age, y

<60 0 (−5.3 to 5.7) .62

≥60 −2.1 (−9.2 to 3.7)

Diabetes

No 0.8 (−4.0 to 5.9) .12

Yes −6.4 (−15.4 to 0.2)

Hypertension

No −0.2 (−5.1 to 5.0) .82

Yes −1.3 (−9.9 to 6.4)

Abbreviations: CTPA, computed tomography pulmonary angiogram;
eGFR, estimated glomerular filtration rate; NA, not applicable.
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Invited Commentary

Exploiting Clinical Decision-making Thresholds to Recover Causal Effects
From Observational Data
Randomization Without Trials
Vinay Guduguntla, MD; J. Michael McWilliams, MD, PhD

Randomized clinical trials (RCTs) are the gold standard of
study design because randomization ensures that differ-
ences in outcomes between a treatment and control group re-

flect the causal effect of treat-
ment. Although RCTs greatly
benefit science and society for
this reason, they often can-

not be conducted because of logistical, ethical, or resource
constraints.1 Researchers are thus confronted with many ques-
tions left unanswered.

To answer those questions, clinical investigators have tra-
ditionally turned to straightforward observational compari-
sons between treated and untreated (or differently treated) pa-
tients, relying on statistical techniques such as regression or
propensity scores to control for confounders. Invariably, how-
ever, treated patients differ systematically from others in ways
that are not measurable with the data collected. Researchers
can control for observed differences, but unobserved differ-
ences remain to an unknown extent. The assumption neces-
sary for causal conclusions from this type of observational re-
search—no unmeasured confounding—is strong, if not heroic.
Thus, the lingering question is not whether the estimates are
wrong, but how wrong.

A different approach to observational research is to search
for sources of naturally occurring random assignment to treat-
ment—RCTs conducted by circumstance as opposed to scien-
tists. These unregistered trials abound, generating unre-
ported results for researchers to harvest. The challenge is not
to design them, but to find them.

This approach to causal inference from observational data,
often called “quasi-experimental,” is standard in the social sci-
ences. Like RCTs, this methodology addresses bias by design,

minimizing the need to measure and control for confound-
ers. Despite rapidly growing use of quasi-experimental meth-
ods in other fields, adoption in clinical research has been slow.1

In this issue of JAMA Internal Medicine, Goulden et al2 (a
multidisciplinary team of clinicians and economists) use a re-
gression discontinuity design to estimate the effect of intra-
venous (IV) contrast on kidney function. They exploit a
D-dimer threshold commonly used to guide use of computed
tomographic pulmonary angiography (CTPA). Because pa-
tients with D-dimer values just above vs below the threshold
should differ minimally other than in their receipt of CTPA, the
administration of IV contrast is effectively randomized among
patients close to the threshold.

Overall, the authors find a large abrupt increase (discon-
tinuity) at the D-dimer threshold in receipt of CTPA with IV con-
trast but no significant discontinuity in eGFR several months
later, suggesting no evidence of contrast-induced nephropa-
thy. Among high-risk patients with diabetes, however, they find
a meaningful worsening in eGFR. These findings add consid-
erably to our understanding of the safety of newer contrast
agents, which has otherwise been based on hard-to-interpret
results from observational comparisons subject to selection
bias.

Because thresholds commonly determine clinical deci-
sions, regression discontinuity analysis is a particularly prom-
ising tool for clinical research.3 Others have applied it to esti-
mate the value of prostate-specific antigen screening, obesity
counseling, and diagnosis of early-stage diabetes for patients
just meeting a cutoff for further treatment.4-6 Goulden et al2

provide an imaginative and elegant application—one to learn
from in the pursuit of evidence-based medicine with obser-
vational research methods.
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